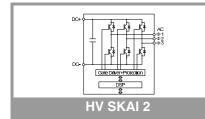


HV SKAI 2

Three-phase IGBT inverter

SKAI 90 A2 GD06-2050WCI


Features

- · Optimized for HEV and EV · High power density · High overload capability • Compact integration in IP67 enclosure: V, I, T sensors Integrated controller Gate driver with protection features IGBT's + CAL Diodes Fully programmable digital signalprocessor **Resolver interface** Active DC-link discharge unit 12V/24V tolerant power supply EMI filters Liquid cooling **DC-link capacitor** Suitable environmental conditions
- in accordance to ISO 16750-(B,F)-N-K-D-Z-IP(6K7;6K9K)

Typical Applications*

- Commercial application vehicle
- ٠ Hybrid vehicle
- Battery driven vehicles (not suitable for mains applications)

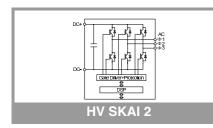
No. 14282050

Characte	eristics					
Symbol	Conditions		min.	typ.	max.	Unit
Electrica	I Data					
V _{isol}	DC, t = 1 s, (routine acc. EN 50178)	etest		3000		v
	DC, t = 1 min, (type acc. ISO 6469-3)	test,		3000		v
V _{CC}	DC supply voltage		0	350	450	V
I _{nom}	rms @ nominal con min, 50% Glykol/ 50	50 Vrms, $f_{out} = 50$ Hz,		300		А
f _{sw}	Switching frequenc	V	1		12	kHz
C _{DC}	DC-link capacitanc	-	0.9		1.25	mF
C _y	EMI capacitor; DC			0.66	0	μF
R _F	DC+ to enclosure,			6		MΩ
R _{BL}	DC+ to DC-		0.13		MΩ	
Mechanic				0.10		17122
				10.0		1 1
Weight				13.9		kg
Height				109		mm
Width				244		mm
Length				475		mm
Mt	AC / DC terminals (13	14	15	Nm
Mc	Cover of terminal box (M5x16 flat-head-screw)		3.5	4	4.5	Nm
M _{cg}	thread engagemen	ds (at 7mm length of t)			20	Nm
Me	Assembly of	M8 screw			20	Nm
	enclosure; thread (I): > 15mm	M6 screw			14	Nm
	Mounting torque of (M4x8)	HVIL sheet screw	1.5		1.75	Nm
M _{gnd}	Ground connection		13	14	15	Nm
Hydraulio	cal Data					
dp	Pressure drop@ 10 $T_{coolant} = 25^{\circ}C$	/min,		100		mba
р	Operating pressure)			2	bar
V _{Coolant}	Coolant quantity of circuit	integrated cooling		300		cm³
Р	Power dissipation t conditions	o coolant; nominal		2.1		kW
Environn	nental Data					•
T _{stg}	Storage temperatur	re	-40		85	°C
T _{no}	Non operating tem		-40		105	°C
T _{air}	Operating range, de $T_{air} > 65^{\circ}C$ with -3A	erating for	-40		105	°C
T _{coolant}	Operating range, de $T_{coolant} > 60^{\circ}C$		-40		75	°C
IP	Enclosure protectio	n level		IP67		1
	With external conne			IP6K9K		1
Altitude	$V_{CC} = 450V$	• •		-	5000	m
	scharge Unit					1
	Discharge time to V	/oo < 60V			5	
t _d			045	250	-	s
R _{dis}	PTC discharge resi	sior (ai 25°C)	245	350	455	Ω

HV SKAI 2

Three-phase IGBT inverter

SKAI 90 A2 GD06-2050WCI


Features

· Optimized for HEV and EV · High power density · High overload capability • Compact integration in IP67 enclosure: V, I, T sensors Integrated controller Gate driver with protection features IGBT's + CAL Diodes Fully programmable digital signalprocessor **Resolver interface** Active DC-link discharge unit 12V/24V tolerant power supply EMI filters Liquid cooling **DC-link capacitor** Suitable environmental conditions in accordance to ISO 16750-(B,F)-N-K-D-Z-IP(6K7;6K9K)

Typical Applications*

- Commercial application vehicle
- Hybrid vehicle
- Battery driven vehicles (not suitable for mains applications)

No. 14282050

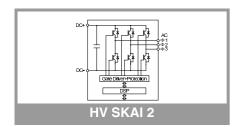
Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Unit
Interface I	Parameters					
Vs	Auxiliary supply vol	tage primary side	8		32	V
I _{S0}	Auxiliary supply cur power converter is X1:02 lower than th not connected (n.c.	not activated (ELX reshold voltage or))			0.5	mA
l _s	Auxiliary supply current primary	Supply current @ Vs = 12V		2900	3900	mA
ls	side with activated power converter	Vs = 24V		1500	2000	mA
t _{POR-DSP}	Power-on reset con section only)				0.5	S
t _{POR}	Power-on reset con primary & secondar				0.92	s
Controller	Switching Parame	ters				
t _{d(on)IO}	Input-output turn-or			0.5	0.8	μs
t _{d(off)IO}	Input-output turn-of	f propagation time		0.5	0.8	μs
t _{jitter}	Signal transfer prim	- sec (total jitter)			50	ns
t _{SIS}	Short pulse suppres	ssion time	0.026		0.052	μs
t _{et}	Input impulse exten	sion time	0.9	1	1.1	μs
t _{d(err)} DSCP	Error input-output p DSCP error	0.2		2	μs	
t _{d(err)OCP}	Error input-output p OCP error		4	20	μs	
t _{d(err)TMP}	Error input-output p temperature error			50	ms	
t _{TD}	Top-Bot interlock de	ead time		4.0	4.1	μs
t _{bl}	V _{CE} monitoring blan	king time		5	5.1	μs
Protectior	n Functions					
T _{PCBtrip}	Over temp. protecti	on trip level on PCB	100	103		°C
T _{DCBtrip}	Over temperature p on DCB	rotection trip level	105	110		°C
MPCBsens	Gradient of PCB Te measurement (16bi ±0.5°C), SPI-adres	t value, accuracy		0.0078		°C/ digi
f _S	Max. sample rate or read-out PCB and [100			s ⁻¹
V _{DCtrip}	Trip level of DC-link	voltage monitoring	450			V
V _{VStrip}	Under voltage prote board primary side	ection trip level of			8	V
V _{VSrst}	Threshold voltage le after failure event	evel for driver reset	8			v
ITRIPSC	Overcurrent trip lev	el	850			A _{PEA}
loutsens	AC sensing range		-924		924	Α
m _{loutsens}	Gradient of output of	current sensing		2.22		digit: A
OS _{loutsens}	Offset of AC curren	t sensing		2048		digit
BW _{loutsens}	Bandwidth (-3dB) o	f I _{AC} sensing		43		kHz
V _{DCsens}	Measurable DC-link		0		600	V
m _{VDCsens}	Gradient of DC-link	-		6.83		digit: V
BW _{VDCsens}	Bandwidth (-3dB) V	cc voltage sensing		90		kHz

HV SKAI 2

Three-phase IGBT inverter

SKAI 90 A2 GD06-2050WCI

Features


- Optimized for HEV and EV
- High power density
- High overload capability
- Compact integration in IP67 enclosure: V, I, T sensors Integrated controller Gate driver with protection features IGBT's + CAL Diodes Fully programmable digital signalprocessor **Resolver interface** Active DC-link discharge unit 12V/24V tolerant power supply EMI filters Liquid cooling **DC-link capacitor** Suitable environmental conditions in accordance to ISO 16750-(B,F)-N-K-D-Z-IP(6K7;6K9K)

Typical Applications*

- Commercial application vehicle
- Hybrid vehicle
- Battery driven vehicles (not suitable for mains applications)

No. 14282050

Characte	ristics				
Symbol	Conditions	min.	typ.	max.	Unit
Resolver	Characteristics				
V _{out}	Resolver excitation voltage (rms), two output voltages (1) / (2) selectable		4.0V / 5.0V		V _{AC}
f _{out}	Resolver excitation output frequency (frequency selectable in 256 steps)	2		20	kHz
	Default setting		10		kHz
r _v	Resolver transformation ratio (1) (max. input voltage sin/cos track: 4Vpp)	0.252	0.286	0.319	
	Resolver transformation ratio (2) (max. input voltage sin/cos track: 4Vpp)	0.212	0.23	0.248	
RL	Resolver excitation load	60			Ω
BW _{resolver}	Bandwidth (-3dB) resolver channel		20		kHz
Motor Ter	mperature Sensing				•
R _{ts}	Measurable range 1 (e.g. for NTC) [Default]	0		33100	Ω
	Measurable range 2 (e.g. for KTY81)	0		4415	Ω
	Measurable range 3 (e.g. for PT1000)	0		1835	Ω
	Measurable range 4 (e.g. for PT100)	0		1345	Ω
Miscellan	eous Functions				•
m _{MP_AI}	Gradient of multipurpose analog input voltage sensing (0-5V, single-ended)	802.3	819.0	837.3	digits V
	Gradient of multipurpose analog input voltage sensing (0-10V, differential)	396.2	409.5	423.7	digits V

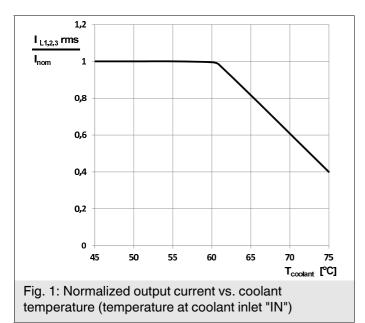
Signal Connector

PIN	Signal	Function	Specifications
X1:01	PWR_VP	INPUT Auxiliary power supply / battery "+"	Supply voltage V _s
X1:02	ELX	INPUT	Input voltage range = 0V +50V (V _{max});
		Turn on / turn off signal of power converter	Trip level (V _{triplevel}) for boot loader configuration
			change = +32.5V+38V;
			Threshold voltage $ON = 5.5V (\pm 2V)$,
			Threshold voltage OFF = $4.5V (\pm 2V)$;
			Input impedance $\geq 2k\Omega$;
X1:03	reserved	reserved	do not connect
X1:04	reserved	reserved	do not connect
X1:05	PS_PWR_GND	GND	Ground of speed/position sensor power
			supply.
X1:06	PS_PWR	OUTPUT	Speed/position sensor power supply;
			Two output voltage modes selectable:
			(1) Output voltage = +12V
			(Resolver mode disabled)
			(2) Output voltage = +14.5V
			(Resolver mode enabled)
			Default setting: Output switched off
			(high impedance), Output current
			limit I _{out} = 250mA (permanent, at room
			temperature),
			(no over-current protection, output can only
			work as a source, output must not be used
			as a current sink)
			Ground of X1:06 (PS_PWR) \rightarrow X1:05.
X1:07	PS_DI_AP	OUTPUT	Resolver functionality is disabled
			at power-up.
		Resolver excitation output E+	For transmission of the absolute
			position to EQEP-init of DSP during
			resolver enable, the following
			sequence is necessary:
			1. Setting of DSP EQEP configuration
			registers.
			2. Reset of EQEP position register
			3. Appropriate setting of motor sensor
			interface configuration register.
X1:08	PS_DI_BP	INPUT	Refer to pin X1:07
		Resolver input Sinus track (-)	
X1:09	PS_DI_NP	INPUT	Refer to pin X1:07
		Resolver input Cosinus track (-)	

PIN	Signal	Function	Specifications		
X1:10 MP_AI_C1P		INPUT Configurable multipurpose analog input channel 1 Complementary signal MP_AI_C1N (pin X1:22)	Input voltage range = $0V \dots +10V$; Input impedance to Analog_GND (X1:24) = $20k\Omega$ (±10%); Accuracy of analog signal = ±2.5% (analog circuit only);		
X1:11	PS_AI_C1	INPUT Analog position/speed sensor input channel 1	Bandwidth (-3dB) = 10kHz; Input voltage range = 0V +5V; Input impedance = $5.5k\Omega$ (±10%); Accuracy of analog signal = ±2.5% (analog circuit only); Bandwidth (-3dB) = 10kHz;		
X1:12	PS_AI_C2	INPUT Analog position/speed sensor input channel 2	Input voltage range = 0V +5V; Input impedance = $5.5k\Omega$ (±10%); Accuracy of analog signal = ±2.5% (analog circuit only); Bandwidth (-3dB) = 10kHz;		
X1:13	PWR_GND	Auxiliary power supply ground	Ground of auxiliary power supply		
X1:14	CANA_H	INPUT/OUTPUT CAN interface channel A HIGH line	Specification: Fully compatible to ISO11898 standard; connected via capacitor (100pF) and CAN bus ESD protection diode to GND. Termination resistor selectable, refer also to Pin X1:26 (CANA_TERM).		
X1:15	CANA_L	INPUT/OUTPUT CAN interface channel A LOW line	Specification: See pin X1:14.		
X1:16	CANB_H	INPUT/OUTPUT CAN interface channel B HIGH line	Specification: Fully compliant to ISO11898-2 standard; connected via capacitor (100pF) and CAN bus ESD protection diode to GND. Termination resistor selectable, refer also to Pin X1:28 (CANB_TERM).		
X1:17	CANB_L	INPUT/OUTPUT CAN interface channel B LOW line	Specification: See pin X1:16.		
X1:18	MP_DO_C1	OUTPUT Multipurpose digital output channel 1	The unit provides multipurpose digital output with overcurrent protection. The output is switched to PWR_VP voltage by a high side switch. The ground for the digital output is PWR_GND (X1:13). Average output current per output: 1.0A; Output current limit $I_{out} = 5A \dots 14A$ (overtemperature range); $R_{DS(on)} \le 300m\Omega$; Max. bandwidth (-3dB): 2kHz;		
X1:19	PS_DI_AN	OUTPUT	Refer to pin X1:07		
N/1 65		Resolver excitation output E-			
X1:20	PS_DI_BN	INPUT Resolver input Sinus track (+)	Refer to pin X1:07		

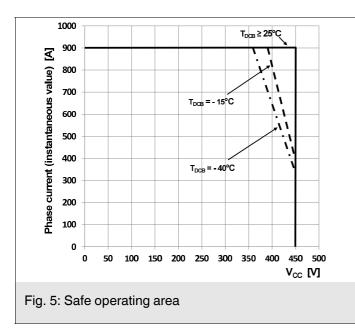
PIN	Signal	Function	Specifications		
X1:21	PS_DI_NN	INPUT	Refer to pin X1:07		
		Resolver input Cosinus track (+)			
X1:22	MP_AI_C1N	INPUT	See pin X1:10 specifications		
		Configurable multipurpose analog input			
		channel 1 Complementary signal to MP_AI_C1P (pin			
		X1:10)			
X1:23	TS_AI_MOT	INPUT	Four selectable temperature sensor		
		Motor temperature sensor analog input channel	measurement ranges.		
		Channel	Temperature sensors e.g.:		
			Range 1: NTC		
			Range 2: KTY81		
			Range 3: PT1000		
			Range 4: PT100		
			Bandwidth of		
			temperature sensing (-3dB): 140Hz.		
			Please refer also to Figure "Motor		
			temperature measurement scaling" and		
			Technical explanations for further details		
			and calculation example(s).		
X1:24	Analog GND	Analog ground	Ground of TS_AI_MOT / PS_AI_Cx		
X1:25 RS232	RS232_RX	INPUT	RS232 interface,		
		RS232 RX	External connected 3.3V-RS232 transceiver		
			necessary.		
X1:26	CANA_TERM	CAN termination channel A	The CAN interface A is extended by		
			termination Pin CANA_Term (X1:26). A termination of the CAN channel A with a		
			termination of the CAN channel A with a termination resistor of 121Ω can be realized		
			by connection of the termination Pin to the		
			CANA_L pin at the cable harness.		
			The selection of the termination has to be done by the customer.		
X1:27	RS232_TX	OUTPUT	RS232 interface,		
X1.27	110202_17	RS232 TX	External connected 3.3V-RS232 transceiver		
			necessary,		
			output voltage level limited to 2.6 – 2.9V by		
			protection diode.		
X1:28	CANB_TERM	CAN termination channel B	The CAN interface B is extended by a		
			termination Pin CANB_Term (X1:28). A		
			termination of the CAN channel B with a termination resistor of 121Ω can be realized		
			by connection of the termination Pin to the		
			CANB_L pin at the cable harness.		
			The selection of the termination has to be		
¥1.00			done by the customer.		
X1:29	MP_AI_C2P	INPUT Configurable multipurpose analog input	Input voltage range = $0V \dots + 10V$;		
		channel 2	Input impedance to Analog_GND (X1:24)		
		Complementary signal to MP_AI_C2N (pin	$= 20k\Omega (\pm 10\%);$		
		X1:30)	Accuracy of analog signal = $\pm 2.5\%$;		
			Bandwidth (-3dB) = 10kHz;		

PIN	Signal	Function	Specifications
X1:30	MP_AI_C2N	INPUT Configurable multipurpose analog input channel 2 Complementary signal to MP_AI_C2P (pin X1:29)	See pin X1:29 specifications.
X1:31	MP_DI_C1	INPUT Isolated multipurpose digital port input channel 1	Input voltage range = 0V +10V; Threshold voltage = 5V (±1.0V); Input filter time constant = 200ns; Isolation between input and logic ground = 100 VDC; For input impedance refer to Technical Explanations.
X1:32	MP_DI_C2	INPUT Isolated multipurpose digital port input channel 2	Input voltage range = 0V +10V; Threshold voltage = 5V (±1.0V); Input filter time constant = 200ns; Isolation between input and logic ground = 100 VDC; For input impedance refer to Technical Explanations.
X1:33	MP_DI_GND	Digital ground	Ground of multipurpose digital port input channels.
X1:34	MP_DO_C2	OUTPUT Multipurpose digital port output channel 2	The unit provides multipurpose digital output with overcurrent protection. The output is switched to PWR_VP voltage by a high side switch. The ground for the digital output is PWR_GND (X1:13). Average output current per output: 1.0A; Output current limit $I_{out} = 5A \dots 14A$ (overtemperature range); $R_{DS(on)} \le 300m\Omega$; Max. bandwidth (-3dB): 2kHz;
X1:35	ENCLOSURE	INPUT/OUTPUT	Connected to inverter enclosure.


Power Connectors

Terminal	Function	cable harness Ø Cu/mm ²	V rated terminal ¹⁾	I rated terminal
DC +	HVDC Bus "+"	@ 50	600V DC	300A rms
DC -	HVDC Bus "-"	@ 50	600V DC	300A rms
L1	Phase L1	@ 50	600V DC	300A rms
L2	Phase L2	@ 50	600V DC	300A rms
L3	Phase L3	@ 50	600V DC	300A rms

1) terminal - terminal, terminal - enclosure


Coolant Fittings

Terminal	Function
IN	Coolant Inlet
OUT	Coolant Outlet

Nominal Operating Point:								
(if not specified otherwise)								
f _{sw}	switching frequency 6 kHz							
I _{nom}	nominal current 300 A							
T _{coolant} *	coolant temperature	60	°C					
T _{ambient}	ambient temperature	65	°C					
dV/dt [*]	coolant flow rate	10	I/min					
V _{CC}	DC link supply voltage	350	V					
V _{OUT}	output voltage	150	V rms					
f _{out}	output frequency	50	Hz					
cos (φ)	power factor	0.85						
	* coolant mixture: 50% glycol / 50% H	l ₂ O						

Fig. 3: Legend

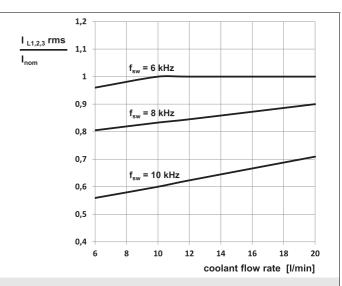


Fig. 2. Normalized output current vs. coolant flow

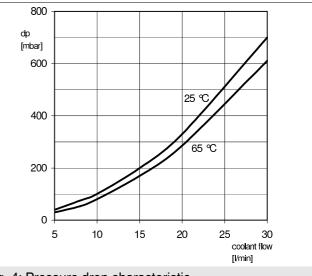


Fig. 4: Pressure drop characteristic (for coolant mixture 50% glycol / 50% H₂O)

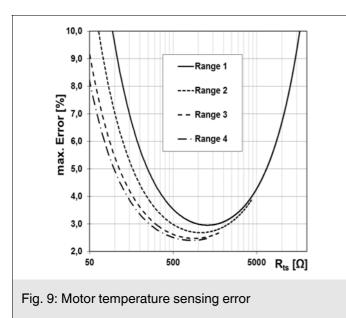
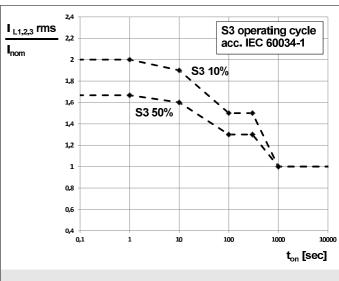

DCB temperature	ADC _{out} [digit]		DCB temperature	ADC _{Out} [digit]			
[°C]	min.	typ.	max.	[°C]	min.	typ.	max.
-40	4065	4072	4078	55	2378	2452	252
-30	4042	4050	4058	60	2193	2270	234
-20	4002	4013	4024	65	2009	2089	216
-15	3974	3986	3999	70	1832	1913	198
-10	3938	3953	3967	75	1662	1742	182
-5	3893	3911	3927	80	1501	1580	165
0	3839	3860	3879	85	1352	1428	150
5	3773	3797	3819	90	1213	1287	135
10	3694	3722	3748	95	1085	1156	122
15	3602	3634	3663	100	972	1037	110
20	3495	3531	3564	105	867	928	99
25	3373	3413	3451	110	774	832	89
30	3235	3281	3325	115	689	744	80
35	3083	3136	3185	120	615	666	71
40	2919	2977	3033	130	488	534	57
45	2744	2809	2870	140	391	429	46
50	2563	2633	2700	150	313	345	38

Fig. 6: DCB temperature measurement scaling

© by SEMIKRON

PCB temperature	ADC _{out} [digit		ADC _{out} [digit] PCB temperature	ADC _{out} [digit]			
[°C]	min.	typ.	max.	[°C]	min.	typ.	max.
-40	3893	4026	4156	45	2009	2149	2288
-35	3868	4002	4134	50	1828	1969	2108
-30	3835	3972	4106	55	1655	1794	1932
-25	3795	3934	4070	60	1491	1628	1764
-20	3745	3887	4025	65	1338	1472	1604
-15	3685	3829	3969	70	1198	1326	1454
-10	3613	3759	3901	75	1069	1192	1315
-5	3529	3676	3819	80	952	1069	1186
0	3431	3578	3722	85	847	957	1068
5	3319	3465	3609	90	752	856	961
10	3193	3337	3480	95	668	766	864
15	3054	3195	3335	100	594	685	777
20	2904	3040	3175	105	528	612	698
25	2744	2873	3002	110	469	548	628
30	2564	2698	2830	115	418	491	565
35	2380	2516	2652	120	372	440	508
40	2193	2332	2470	125	333	394	458


Fig. 7: PCB temperature measurement scaling

Motor temperature [°C] (ambient temperature of sensor)	ADC _{out} [digit]		Motor temperature [°C] (ambient	ADC _{out} [digit]	
	Range 3	Range 4	temperature of sensor)	Range 3	Range 4
	PT1000	PT100		PT1000	PT100
-40	2343	390	55	3086	537
-35	2386	398	60	3122	545
-30	2428	406	65	3156	553
-25	2470	414	70	3191	560
-20	2512	422	75	3225	568
-15	2553	430	80	3259	575
-10	2594	437	85	3293	582
-5	2634	445	90	3326	590
0	2674	453	95	3359	597
5	2713	461	100	3392	605
10	2752	469	105	3424	612
15	2791	476	110	3456	620
20	2829	484	120	3519	634
25	2867	492	125	3550	643
30	2905	499	130	3581	649
35	2942	507	135	3611	656
40	2978	515	140	3642	663
45	3015	522	145	3672	673
50	3051	530	150	3701	678

Fig. 8: Motor temperature measurement scaling

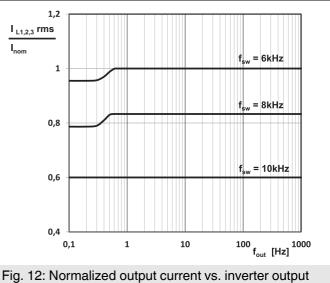
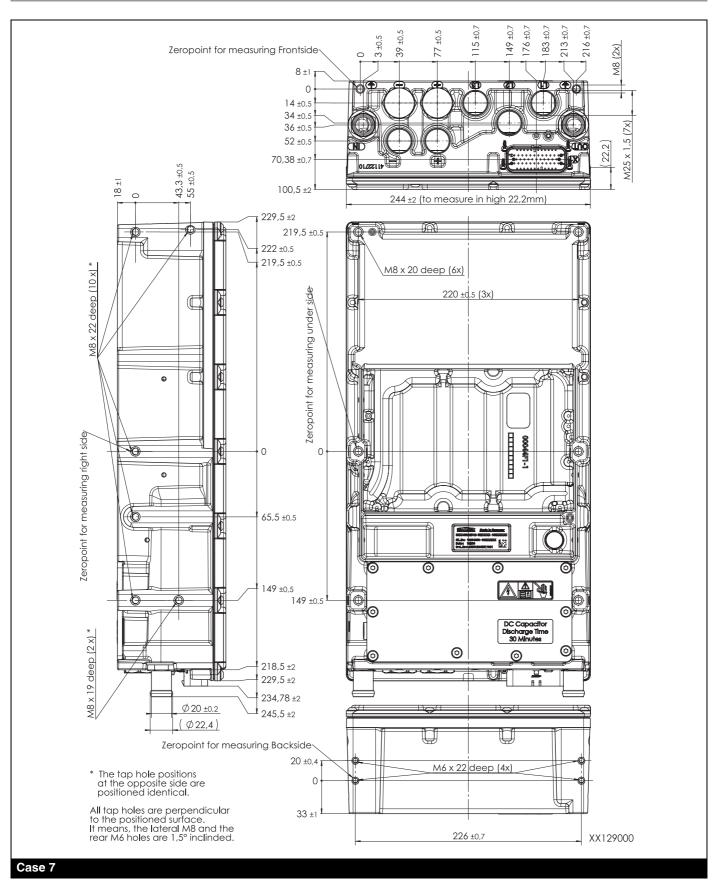
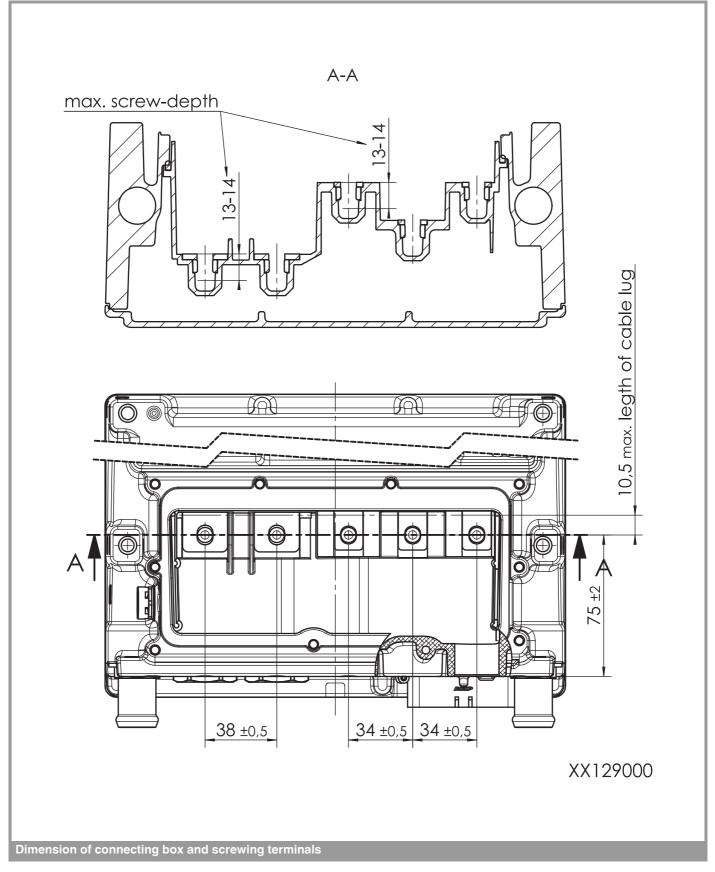




Fig. 12: Normalized output current vs. inverter output frequency

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.